Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-(2-Furyl)-1-phenylprop-2-en-1-one 2,4-dinitrophenylhydrazone

Heng-Yu Qian, ${ }^{\text {a* }}$ Cheng Liu ${ }^{\text {b }}$ and Zhi-Gang Yin ${ }^{\text {a }}$

${ }^{\text {a School }}$ of Material \& Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry,
Zhengzhou University, Zhengzhou 450052,
People's Republic of China

Correspondence e-mail:
hengyuq@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.044$
$w R$ factor $=0.135$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{5}$, the dinitrophenylhydrazone and furylidene groups are nearly coplanar, making a dihedral angle of $4.50(10)^{\circ}$. There is an intramolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, while weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into pseudo-dimers arranged around inversion centers.

Comment

Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents (Okabe et al., 1993). One of our aims in studying Schiff bases containing nitrophenylhydrazine is to develop protein and enzyme mimics (Santos et al., 2001) and obtain Schiff base structural information which will help us to investigate their coordination properties. We report here the crystal structure of the title compound, (I).

The dinitrophenylhydrazine and furylidene planes are nearly coplanar, making a dihedral angle of only $4.50(10)^{\circ}$; the phenyl ring is roughly perpendicular to these planes, making dihedral angles of $85.24(5)$ and $81.76(5)^{\circ}$, respectively (Fig. 1).

The $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{C} 6$ bond lengths are longer than the other $\mathrm{C}-\mathrm{C}$ bond lengths in the same ring, consistent with other dinitrophenyldrazone derivatives (Ohba, 1996; Bolte \& Dill, 1998). An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is observed in the title compound, (I) (Fig. 1). In adition, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into pseudo-dimers arranged around inversion centers (Fig. 2).

Experimental

2,4-Dinitrophenylhydrazine ($1 \mathrm{mmol}, 0.198 \mathrm{~g}$) was dissolved in anhydrous ethanol, then $\mathrm{H}_{2} \mathrm{SO}_{4}(98 \%, 0.5 \mathrm{ml})$ was added and the
mixture was stirred for several minutes at 351 K . Furylideneacetophenone ($1 \mathrm{mmol}, 0.186 \mathrm{~g}$) in ethanol (6 ml) was then added dropwise and the mixture was stirred under reflux for 3 h . The product was separated and recrystallized from dichloromethane. Brown single crystals of (I) were obtained after 2 d .

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{5}$
$M_{r}=378.34$
Monoclinic, $P 2_{\curvearrowleft} / n$
$a=8.1605(5) \AA$
$b=17.7094(11) \AA$
$c=12.8041(8) \AA$
$\beta=100.058(1)^{\circ} \AA^{\circ}$
$V=1822.0(2) \AA^{3}$
$Z=4$

$$
D_{x}=1.379 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 4026 reflections
$\theta=2.8-27.3^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Block, brown
$0.37 \times 0.30 \times 0.22 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2000 $)$
$\quad T_{\min }=0.963, T_{\max }=0.978$
15658 measured reflections

4181 independent reflections 2780 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-23 \rightarrow 22$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.135$
$S=1.05$
4181 reflections
253 parameters
H-atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 \cdots O1	0.86	1.96	$2.6014(18)$	131
C13-H13 \cdots O $^{\mathrm{i}}$	0.93	2.35	$3.276(2)$	176

Symmetry code: (i) $-x+1,-y+1,-z+1$.

All H atoms were introduced in calculated positions and treated as riding on their parent atoms, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}, \mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors express their deep appreciation to the Startup Fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry (No. 2005001) and the Startup Fund for Masters of the Natural Scientific

Figure 1
The structure of (I). Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond and H atoms are shown as small spheres of arbitrary radii.

Figure 2
View showing the weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) linking two molecules around an inversion center. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) $1-x, 1-y, 1-z$.]

Research of Zhengzhou University of Light Industry (No. 000455).

References

Bolte, M. \& Dill, M. (1998). Acta Cryst. C54, IUC9800065.
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ohba, S. (1996). Acta Cryst. C52, 2118-2119.
Okabe, N., Nakamura, T. \& Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.
Santos, M. L. P., Bagatin, I. A., Pereina, E. M. \& Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

